
IFF Icon Data Decoded

Background information:

The image data for the IMAG chunks are encoded using a modified version of RLE aka Run Length

Encoding. It is a bitstream rather than a byte stream composed of RLE bytes and image data bytes.

Perhaps, the IFF icon image data storage format is a trade-off between complexity and practicality.

Because applying the RLE encoding to chunky data is much more efficient than applying the same

encoding to planar data the storage size is much smaller and thus much more practical for Amiga

computers which in the early days had very limited storage space. However, the storage format is

complex and difficult to implement so bit shifting and masking is needed for encoding & decoding.

Because of the complexity of it let’s look at some sample image data in the Hex Editor as well as

Some Pseudo Roman Numeral Notation to help explain how to interpret and decode the image data.

The large I’s and small I’s are used to indicate the transition from input byte to the next byte in the

sequence. The colored I’s indicate which bits in the bitstream are shared between the output bytes.

The actual bytes for bitstream in a Hex Editor:

81 06 80 3F C3 FE 2F 01 FF 8B FC 3E 20 FF 0F 50 80 82 42 F9 80 0C 22 10 7B 8A 08 11 08

86 F3 07 F8 80 42 5F E3

The first 9 input bytes from the bitstream are: 0x81, 0x06, 0x80, 0x3F, 0xC3, 0xFE, 0x2F, 0x01, 0xFF.

Note that even the RLE control bytes are encoded in the bitstream. For the 2-byte pairs that indicate

byte runs of equal bytes there is a repeating pattern. In the bitstream the first RLE byte is just a byte.

It represents 8 bits so it is shown in black. Since there is no previous byte no bit shifting is needed to

retrieve the byte value. So, in a sense, the first byte is not part of the encoded bitstream. But starting

with the next byte in the input sequence is where the bitstream encoding actually begins.

For 2-byte pairs there will be 8 bits followed by image data which is encoded by depth. For example, if

depth is 5 then each 8 bit value is followed by a 5 bit value sandwiched in between the RLE bits. The

pattern of encoded data repeats for each of the 2-byte pairs – 8 bits, 5 bits, 8 bits, 5 bits, 8 bits, 5 bits,

and so on. Bit shifting and masking should be used to retrieve the output byte values including the RLE

control bytes and image data bytes. For RLE copy bytes which are strings of single bytes that are not

equal to each other the pattern of storage bits is different. First there is an 8 bit RLE value followed by

however many image bits needed by depth. So, with depth of 5 to store 4 image bytes will be 8 bits,

5 bits, 5 bits, 5 bits, 5 bits. The 4 image bytes of 5 bits each only occupy 20 bits so they easily fit within

just 3 bytes of input data in the bitstream with 4 unused bits remaining at the end. Those 4 remainder

bits will be used with the next byte in the sequence to retrieve the next 8 bit RLE value. It isn’t wasted.

Pseudo Roman Numeral Notation:

RLE Formula: If (value > 128) then value = (256-value+1), If (value < 128) then value = value+1

 129 06 128 63 195 254 47 01 255
10000001, 00000110, 10000000, 00111111, 11000011, 11111110, 00101111, 00000001, 11111111,

IIIIIIII - IIIIIIII - IIIIIIII - IIIIIIII - IIIIIIII - IIIIIIII - IIIIIIII - IIIIIIII - IIIIIIII

 10000001, 00000, 11010000, 00000, 11111111, 00001, 11111111, 00010, 11110000, 00011,
[129]128 0 [208]49 0 [255]2 1 [255]2 2 [240]17 3

First 9 bytes decoded: {128,0} {49,0} {2,1} {2,2} {17,3}

Decoded: 198 bytes will be written to the output buffer.

Mask Values for RLE & image data:

For masking the mask for the 8 bit RLE bytes is 0xFF (255) in binary: 11111111. For image data with

depth of 5, for example Mask = (1<<depth)-1. Since total number of colors by depth is (1<<depth)

which for depth of 5 is 32, the corresponding mask will be 32-1. 31 in binary: 00011111. The 1’s in each

mask value are the number of bits that will be retrieved from the bitstream after bit shifting into place.

mask = 0xFF (255) or mask = (1<<depth) – 1.

The bitbuffer container & the bit count:

For bit shifting and masking a 32 bit long container called the “bitbuffer” is used. Only up to 16 bits of

input data will be used to retrieve RLE bytes and image bytes at any given time. For reasons of keeping

track of the position in the current input byte and for deciding how many bits to shift to the right to get

the bits in the correct position for masking the “bit count” and “bit index” values are used. The bit count

represents the current number of bits which is always less than 8. The bit index is (bit count + 8). If at

any time bit count is > depth then a “bit adjust” (bits -= depth) is needed to keep the bit count in range.

In order to decode the image data load each input byte and apply bit shifting and masking as needed to

retrieve the RLE bytes and image bytes till the end of the input byte buffer is reached at which time the

number of total bytes in the output byte buffer should be equal to width x height of the icon image itself.

Basic decoding methods:

Here are some of the basic code sample methods to load and decode the bytes from the bitstream.

To load an RLE byte from the input bitstream do this:

if(bits < 8) then bitbuf = (bitbuf<<8)|*(srce++); //load byte

then apply the “bit index” bits += 8; //bit index

To get the 8 bit RLE byte value do this:

val = (bitbuf>>(bits-8))&0xFF; //get byte with mask

then apply the “bit adjust” bits -= 8; //bit adjust

Note that “val” is “unsigned char val”. It’s a byte value. After we retrieve the value from the bitstream

then we need to evaluate the value.

To evaluate the byte value do this:

if (val <= 127) then (copy = val + 1); //RLE control byte. This is the number of single bytes to be copied.

else if (val > 128) then loop = (256 - val +1); //RLE control byte. This is the number of equal bytes to

write to the output byte buffer.

Inside the processing while loop if “copy” (single bytes) or “loop” (equal bytes) are > 0 then we perform

the operations to write the appropriate data to the output byte buffer.

For “loop” values to load a byte do this:

if (loop) {

if(bits < depth) bitbuf = (bitbuf<<8)|*(srce++); //load byte

bits += 8; //bit index

To get the actual byte value do this:

val = (bitbuf>>(bits-depth))&mask; //get byte with mask

Then setup a for-loop to process the equal bytes to be written to the output byte buffer…

for (i=0; i<loop; i++) {

dest[out+i] = val; }

After that we need to reset the various location variables such as…

idx++; //RLE loop byte, bits -= depth; //bit adjust, out += loop; loop = 0;

} //end if loop

For “copy” values to load & process a byte do this:

Note: Because we are not just copying the same value repeatedly as with “loop” values for “copy” values

representing a string of not-equal bytes we must do everything within a dedicated for-loop.

if (copy) {

 for (i=0; i<copy; i++) {

 if(bits < depth)

 { bitbuf = (bitbuf<<8)|*(srce++); //load byte, bits += 8; //bit index

 } //end if bits

 val = (bitbuf>>(bits-depth))&mask; //get byte with mask

 dest[out+i] = val;

 idx++; //RLE copy bytes,

 bits -= depth; //bit adjust

} //end for loop

out += copy;

copy = 0;

} //if copy

Conclusion:

Although the storage format for the encoded image data in the IMAG chunks is complex it serves its

purpose in keeping the size of the icon file small. If we look at the size of RLE encoded planar data in the

icon image stored as an ILBM file the image data seems larger. So the encoded bitstream method is more

efficient at storing the chunky bytes of data for the images. It would have been easier to just copy the

RLE encoded planar data from the body of the ILBM directly to the IMAG chunk but then we would lose

the efficiency of the compression method. In some ways the complexity of the storage format is really

daunting, but at the same time the practicality of it is also evident by allowing more efficient storage.

The method to encode chunky bytes of image data to store it in the bitstream of data is just the reverse.

However, bit shifting is needed to encode the data in the bitstream. For decoding the IFF icon image data

the programmer should start by writing a “DecodeRLE” algorithm for decoding run length encoding. For

encoding the IFF icon image data likewise start by writing an “EncodeRLE” algorithm. For both then add

necessary bit shifting and masking. That’s all there is to encoding and decoding the image data for IMAG.

